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Ninety years have ellapsed since the Old Quantum Theory has emerged, and 

eighty three over the foundations of Modern Quantum Mechanics. Born in 

1901, Ruy Gustavo Couceiro da Costa soon became aware of the importance 

of Quantum Mechanics in Science, particularly in Chemistry. Such a vision 

has flurished ever since and its presence in the scientific realm is nowadays 

unquestionable: Physics, Chemistry, Biology, Astronomy, Engineering and even 

Philosophy, all such areas of knowledge reflect the importance of judgement 

in accordance with the quantum laws. This book is a result of a Symposium 

to honor the memory of Professsor Couceiro da Costa for his contribution to 

the development of Quantum Mechanics in Chemistry and Physics in Portugal.

A tribute to the memory of
Professor Couceiro da Costa



9. COMPUTAT IONAL THERMOCHEM I S TRY : ACCURATE

ES T IMAT ION AND PRED ICT ION OF MOLECU LAR

THERMOCHEM ICAL PARAMETERS

Victor M. F. Morais*

Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto,
P-4099-003 Porto, Portugal

The problems involved in the Quantum Mechanical calculation of molecular
energies are identified, with special emphasis on the problem of correctly
describing the effects of the correlated electronic motions. Some of the avail-
able Quantum Mechanically based methods for the calculation of molecular
energies are then briefly described and their application to some selected
systems are detailed. The quality of the results so obtained illustrates the
usefulness and the accuracy achieved through the use of conveniently based
computational techniques and the fact that contemporary thermochemists
have now the real possibility of complementing their experimental measure-
ments with well founded very accurate calculated data or, even, of obtaining
original and very accurate thermochemical data entirely from computational
techniques.

9.1 Computational Methods

Since the introduction of Quantum Mechanics, in the first quarter of twenti-

eth century, very important advances in chemistry have emerged, particularly in

those fields where accurate numerical data is required, such as thermochemistry

and chemical kinetics. Indeed, it is now recognized that Quantum Mechanics

constitutes the ultimate, most accurate and complete description of the beha-

viour of matter at the atomic and molecular scale and, as such, much hope

has been put in the development of efficient computational methods which

can provide accurate estimates of the molecular thermochemical parameters.

*Email address: vmmorais@icbas.up.pt
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Such achievements would contribute to definitely establish computational ther-

mochemistry as a reliable complement to experimental thermochemistry, thus

opening new frontiers to the study of chemical species whose instability or short

lifetime has prevented experimental analysis up to now.

This talk is concerned with the difficulties found when the methods of

Quantum Mechanics are to be applied to real systems and with the description of

some state-of-the-art computational techniques which have been developed to

provide accurate molecular thermochemical parameters. We will describe also

some applications of those computational methods with particular emphasis to

the analysis of the stability of selected molecular species.

The task of accurately describing the properties of molecular systems starting

from the concepts of Quantum Mechanics would appear as very straightforward

if it is accepted that such theory provides the most accurate and complete de-

scription of the behaviour of matter at the atomic and molecular level. According

to this point of view it becomes obvious that in order to obtain reliable and ac-

curate estimates of molecular thermochemical parameters it suffices to solve the

corresponding Schrödinger equation

ĤΨ = EΨ (9.1)

which is a differential eigenvalue equation providing, as solutions, the energy,

E, and the wavefunction, Ψ, of the stationary states of the molecular system.

In this equation Ĥ is the Hamiltonian operator, acting on the wavefunction Ψ,

which depends explicitly on the spatial and spin coordinates of the electrons

and the nuclei. Even though Schrödinger equation can be easily solved for hy-

drogen atom and, in general, for any system with just one electron, in which

case it provides accurately the experimentally observed energies, when we pro-

ceed to more complex systems, with at least two electrons, such exact solution

reveals unattainable, and some kind of approximate solution must be seek in-

stead. The vast majority of the methods used to obtain approximate solutions

to the Schrödinger equation is based on a general approximation introduced to

the model of the wavefunction used to describe the system under study. This
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approximation assumes that each electron in the system moves independently

of the other electrons (an independent particle model is thus adopted) and the

interactions among the various electrons are accounted for through the intro-

duction of a potential energy function representing just the time average of the

instantaneous interactions between each electron and the remaining ones. Thus,

each electron will then be described by a particular spatial function, ϕi, which

depends on its spatial coordinates. According to the Pauli antisymmetry prin-

ciple each such spatial function, generically called molecular orbital, can really

accommodate two electrons, as long as they have different spin coordinates, α

or β. The wavefunction describing the overall electronic system can then be

represented by a function with the following general form:

Ψ =
1√
n!

det |(ϕ1α)(ϕ1β)(ϕ2α) · · · | (9.2)

where the determinant, called Slater determinant, ensures the proper antisym-

metry of the wavefunction, as is required for systems constituted by fermions.

The energy of the system can then be obtained through variation of the mo-

lecular orbitals in order to minimize the expectation value of the Hamiltonian

operator:

E = 〈Ψ|Ĥ |Ψ〉 (9.3)

Such variational procedure leads to a system of coupled differential equa-

tions, called Fock equations, whose solutions are the molecular orbitals, ϕi.

Thus, in the Hartree-Fock model each electron feels a potential which is the

average of the instantaneous potential created by the other electrons. Such re-

placement of the true (instantaneous) potential by the average potential ensures

that the Hartree-Fock method can easily lead to approximate solutions of the

Schrödinger equation. However, those solutions will certainly reflect the nature

of the adopted approximations, in the sense that they should incorporate the

errors associated with the assumptions assumed for the wavefunction model.

We must stress that the solutions of the Fock equations (the molecular orbitals,

ϕi) are obtained in numerical form, as tables of numerical values, instead of

some kind of analytical form, which would be preferable for those aiming to
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analyse the properties of the electronic systems in terms of the contributions

resulting from the subsystems constituting them, e.g., the properties of a mo-

lecule as resulting from contributions of their individual atoms. This situation

soon conducted to a proposal involving the mathematical representation of the

molecular orbitals as expansions in terms of selected mathematical functions,

collectively called basis set:

ϕi =
N∑
k=1

ci,kχk (9.4)

The adoption of such representation had the very important consequence of

allowing the replacement of the system of coupled differential equation, the

Fock equations, by a system of algebraic equations, the so-called Hartree-Fock-

Roothaan equations, involving the coefficients of the individual members of the

basis set in each molecular orbital, ϕi. In this way, the required flexibility of

the wavefunction which allows for the minimization of the expectation value

(9.3) is thus transferred to the variation of the molecular orbital coefficients,

whose values must then be optimized in order to (variationaly) minimize the

expectation value of the energy. The basis sets are usually chosen to consist

of atomic centered functions which are often assimilated to the corresponding

atomic orbitals. Since the basis sets used in practice are necessarily limited in

size, their capability of description of the molecular orbitals is also limited and,

as such, the resulting expectation value for the energy is affected by numerical

errors. We can thus observe that, up to this point, two possible sources of errors

are present in the computational procedure we are describing: on the one hand

the errors resulting from the particular model (9.2) of wavefunction adopted by

the Hartree-Fock scheme and on the other hand the limitations resulting from

using finite sets of basis functions for the molecular orbital representation. Even

if we used a complete set of basis functions to represent the molecular orbitals

(so eliminating the second source of inaccuracy) the energy obtained by the

Hartree-Fock method, which is then called Hartree-Fock energy, EHF, would be

in error when compared with the observed (non-relativistic) one, Eexact. Such
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Table 9.1. Correlation errors for two simple molecular systems.

Eexact EHF Ecorr % Ecorr/kcalmol−1

H2 −1.1749 −1.1340 −0.0409 3.48 ∼ −26
H2O −76.435 −76.065 −0.37 0.48 ∼ −232

error:

Ecorr = Eexact − EHF (9.5)

which is always negative, since the Hartree-Fock method is variational, is called

correlation energy, or correlation error, a designation reflecting its phenomeno-

logical origin related to the fact that the motions of the electrons with different

spins are described as completely non-correlated by Hartree-Fock theory. Even

though this error seems often very small when we consider its value relative to

the total electronic energy (typically less than 1% of the total electronic energy),

its contribution to the properties which are of interest to chemists, like bond

energies or, more generally, reaction energies, is so large that its very existence

precludes using the energies so obtained to get reliable estimates of such ener-

getic parameters. Table 9.1 shows typical contributions of the correlation energy

for small molecular systems. We can observe from that Table that the absolute

errors resulting from neglecting the correlation energy are unacceptable, even

for the most simple systems, when we come to consider accurate description

of reaction energies. Indeed, the absolute errors shown in that Table are by far

much larger than the errors chemists can accept, i.e., about 1 kcal/mol.

We must, in addition, stress that real calculations for truly interesting mo-

lecules can only be conducted with severe limitations on the basis sets complete-

ness, and, as such, the actual errors involved in the results are even much more

important than the correlation error, because we don’t even reach the Hartree-

Fock limit in such cases. So, if quantum mechanical techniques, based on the

Hartree-Fock wavefunction, are to be fruitfully used to get reliable energetic

information, we must proceed by simultaneously correcting the Hartree-Fock

method along two independent routes: (i) by improving the model (9.2) of the

wavefunction and (ii) by using basis sets as close to completeness as possible.
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A logical route to get better results than simple Hartree-Fock theory can

provide follows directly from the observation that the Hartree-Fock solution

(9.2) usually involves more molecular orbitals, ϕi, than those which are needed

to accomodate the electrons constituting the molecule. Thus, even though only

the lowest energy molecular orbitals, ϕi, are used to construct the Slater determ-

inant (9.2), a considerably higher number of molecular orbitals is obtained in

the procedure of variationally minimization of the energy. The remaining mo-

lecular orbitals are thus unoccupied in the configuration (9.2); such unoccupied

orbitals are called virtual orbitals. Distribution of the electrons by the low en-

ergy molecular orbitals, as in (9.2), can thus be viewed as just one of the many

possible ways of distributing the electrons by the available molecular orbitals. It

has been found that the description provided by the Hartree-Fock method can

be improved by adding to the single-determinant wavefunction (9.2) a number

of configurations resulting from alternative distributions of the electrons by the

remaining available virtual molecular orbitals. This procedure leads to an altern-

ative description of the molecular wavefunction which can then be symbolically

represented as:

Ψ = a0Ψ0 +
∑
i,a

aai Ψ
a
i +

∑
i,a

∑
j,b

aabij Ψ
ab
ij + · · · (9.6)

In this equation Ψ0 represents the Hartree-Fock wavefunction (9.2), while Ψa
i a

Slater determinant (also called configuration) obtained by promoting one elec-

tron from occupied molecular orbital i to virtual molecular orbital a, Ψab
ij the

doubly excited configuration obtained by simultaneously promoting two elec-

trons from occupied orbitals i and j to virtual orbitals a and b, … etc. This

linear combination of Slater determinants is the philosophy of the so called

Configuration Interaction (CI) method. Simply put, a CI wavefunction is a linear

combination of Slater determinants (configurations) whose coefficients are to

be determined variationally. Of course, in real calculations this linear combina-

tion must be severely truncated in order to lead to workable tasks. The simplest

standard CI method which improves upon Hartree-Fock is a CI calculation which

adds all singly and doubly substituted determinants (CISD). However, the CISD
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wavefunction has soon fallen out of favor because truncated CI wavefunctions

short of full configuration interaction are not size-extensive, meaning that their

quality degrades as the size of the molecules becomes larger. This is a general

result about the Configuration Interaction method: when used in a truncated

way the CI series leads to results which are not size consistent. A formulation

of Configuration Interaction which remains size consistent even when arbitrarily

truncated, called quadratic CI (QCI), has been proposed, the simplest method

to improve Hartree-Fock results being, in this case, designated by QCISD and

being now preferred to the earlier implementations.

An alternative attractive formulation involves perturbation theory using the

Hartree-Fock wavefunction as the zeroth-order wavefunction and the difference

between the complete Hamiltonian and the Hartree-Fock Hamiltonian, i.e., the

correlation energy, as the perturbation. This is the Møller-Plesset formulation

of perturbation theory and is based on a perturbational series for the energy,

involving successively higher order corrections to the this parameter:

E = E0 + E1 + E2 + E3 + · · · (9.7)

together with a corresponding series for the wavefunction. As in the case of the

CI method, the complete perturbation treatment leads to the best description

we can get with the used basis set. Indeed, both expansions, variational and

perturbational, are conceptually very similar, to the point that when considered

non-truncated they will lead exactly to the same result: the exact one. Naturally,

in real calculations, only approximate treatments can be conducted, taking ac-

count of a limited number of terms in the perturbation series: the simplest way

of improving the Hartree-Fock energy (which is correct to the first order, thus

being just the sum of the first two terms in the perturbational series) through

perturbation methods involves including just the second order contributions,

leading to the so called MP2 method. Successive perturbative methods thus

adopt the designations MP3, if all terms up to third order are included in the

perturbational series, MP4, when all terms up to fourth order are included, and

so on. One important advantage of perturbation techniques over the CI method
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is that truncated (to any order) perturbation calculations always lead to size con-

sistent results, while truncated configuration interaction calculations do not. The

two methods are, otherwise, thought as equivalent in the sense that including

all possible configurations in a combination which is compatible with the spin

symmetry of the molecular state we are aiming to describe, leads to the so called

full CI (FCI) limit, and describes the system so rigorously as including all terms

in the perturbational expansion. Thus, both methods will provide naturally the

best possible description we can obtain with the basis set which is being used.

There are also some other important methods, of which we will only refer

the coupled cluster (CC) methods because of their growing importance as a

size-consistent alternative to configuration interaction. As with the CI method,

coupled cluster techniques are also usually implemented in very truncated ver-

sions, leading to different CC flavours: thus CCSD considers only single and

double excitations, while CCSD(T) also includes a perturbative account of the

effect of triple excitations, etc. We have just mentioned some procedures which

are most often adopted in order to surpass the natural limitations of the Hartree-

Fock formulation, i.e., some useful post-Hartree-Fock techniques.

Conversely, by proceeding along the other route to better describe the sys-

tem, i.e., by enhancing the capability of representation of the basis set in order

to get so close as possible to basis set completeness, we will obtain the better

description possible, restricted to a chosen model of the wavefunction. So, it

seems obvious that any systematic search for accurate calculation of molecular

energetic parameters procedures must simultaneously progress along both direc-

tions, performing a kind of two-dimensional progression, in order to include the

larger possible number of terms in the configurational or perturbational expan-

sions, thus approaching the FCI limit and, additionally, to extend, as possible, the

basis set in order to approach the complete basis set (CBS) limit. Such technique

would naturally lead to the exact solutions, that is, to the energies observed ex-

perimentally, when we reach simultaneously both individual limits, FCI and CBS,

as is schematically depicted in Figure 9.1. Of course this limit can only be at-

tained if we are just considering very simple electronic systems, more complex
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Figure 9.1. Bidimensional route to exact solution of Schrödinger equation.

systems leading to so computationally demanding tasks that the calculations are

really precluded by the necessarily limited resources. In order to further proceed

and provide reliable insights into the properties of more complex real systems

we thus need to accept the incorporation of additional approximations to the

above protocol. A large number of computational recipes have already been

suggested and tested; we will limit ourselves to a very short description of some

of those methods, particularly those we have selected to conduct calculations

on some interesting molecules. Almost all accurate procedures for obtaining en-

ergetic data share the basic philosophy, which involves using less sophisticated,

yet reliable, calculations to obtain the molecular geometry and the vibrational

frequencies (both of these are generally very time consuming tasks, but are es-

sential for forthcoming calculations) and then introduce the correlation energy

estimates from a much more sophisticated level of theory and with the most

extense basis set compatible with available computational resources.

Such composite procedures would ideally be rigorously formulated and

should conduct to the equivalent result of a single calculation much more soph-

isticated than each of the individual calculations involved. The most accurate of

the methods we currently use, G3, belongs to the series of techniques named
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Figure 9.2. Schematics of the individual calculations involved in the G3 method.

G(aussian)-N (N = 1, 2, 3), originally suggested by Pople and co-workers [1].

The detailed sequence of individual computations integrating a G3 calculation

are schematically depicted in Figure 9.2. The final energy at the G3 level is ob-

tained as a MP4 energy calculated with the 6-31G(d) basis set properly corrected

for several effects:

EG3 = 2 + (3− 2) + (5− 2) + (7− 2) + (8− 1)− (4− 1)− (6− 1) (9.8)

The correction terms represent several effects described as follows:

(5− 2) ≡ ΔE(+) is a correction aiming to account for the effect of using

diffuse (+) functions;

(7 − 2) ≡ ΔE(2df , p) is a correction for the use of higher polarization

functions on nonhydrogen atoms and p functions on hydrogen atoms;

(3− 2) ≡ ΔE(QCI) corrects for correlation effects beyond fourth order of

perturbation theory using the method of quadratic configuration interaction;

(8− 1)− (4− 1)− (6− 1) ≡ ΔE(G3 Large) is a correction for larger basis

set and nonadditivity effects. Thus, as we can observe from the scheme, the G3

energy is really a presumably good approximation to a QCISD(T) energy calcu-

lated with a large basis set (G3 Large), but obtained without really conducting

such very expensive calculations.

230



This computational method has been much tested now and reveals a very

accurate computational method. Its computational cost scales formally as N 7,

where N is roughly the number of atoms in the molecule, and so becomes very

heavy even for moderately sized molecules. As such, other methods have been

selected to proceed with the calculation of thermochemistry properties. Some

less expensive variants of G3 have been suggested: G3B3 is a G3 method which

involves using the B3LYP method to obtain the geometry and frequencies while

G3(MP2) replaces the MP4 steps of the original procedure by calculations at

the MP2 level. Among many other available methods we also adopted some of

those based on a slightly different philosophy. The basis of the multi-coefficient

correlation methods (MCCM) of Truhlar and coworkers [2,3] is similar to that

adopted in the Gaussian-N series but, instead of simply adding the individual

corrections to the reference calculations, these are introduced after being scaled,

or weighted, by optimizable parameters. These parameters are then optimized

so that the errors in the atomization energies (or perhaps other energetic para-

meter or even a combination of several parameters) of a set of representative test

molecular systems are minimized. The use of adjustable parameters allows for

the inclusion of lower levels of correlation and/or smaller basis sets to achieve

a given level of accuracy. Thus the cost of both methods we usually use to pre-

dict thermochemical parameters, MCUT and MCQCISD, scale “simply” as N 6,

thus allowing to consider much larger molecules than the G3 method. The in-

dividual calculations involved within these methods are graphically depicted in

Figures 9.3 and 9.4, respectively for MC-UT and for MC-QCISD. MC-UT method

aims to reproduce MP4(SDQ) calculations with the modified Gaussian 3 semid-

iffuse (MG3S) basis set, by judiciously combining several individual calculations

as:

EMC-UT = 1 + c1(2− 1) + c2(3− 2) + c3[(4− 2)− (3− 1)] + c4(5− 3) (9.9)

while MC-QCISD aims to reproduce QCISD calculations obtained with the mod-

ified Gaussian 3 semidiffuse (MG3S) basis set, by combining several individual
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Figure 9.3. Schematics of the individual calculations involved in the MCCM/MC-
UT method.

Figure 9.4. Schematics of the individual calculations involved in the MCCM/MC-
QCISD method.
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Figure 9.5. Schematic representation of CBS extrapolation technique.

calculations as:

EMC-QCISD = 1 + c1(2− 1) + c2(3− 2) + c3[(4− 2)− (3− 1)] + c4(5− 3) (9.10)

In addition to the aforementioned methods other relevant techniques based on

somewhat different principles have also been suggested. The CBS (complete

basis set) series of methods [4] share the following individual calculations:

(i) (U)HF/6-31G† geometry optimization and frequencies;

(ii) MP2(FC)/6-31G† optimized geometry for subsequent calculations;

(iii) (U)MP2/6-311+G(3d2f,2d f 2p) energy and CBS extrapolation;

(iv) MP4(SDQ)/6-311G(d(f ), p) energy;

(v) (QCISD(T)/6-31+G† energy.

The innovative key step is the use of an extrapolation of the results of the MP2/6-

311+G(3d2f,2df,2p) calculation to the complete basis set (CBS) limit (Figure 9.5).

This extrapolation is based on the asymptotic behaviour of the natural orbitals

and allow the obtention of very accurate results without having to conduct the

most expensive individual steps involving very high levels of electron correlation

and very extensive basis sets.

Much important in the context of basis set extrapolation techniques has been

the introduction [5] of classes of hierarquical basis sets specially designed to suc-
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Table 9.2. Fraction of correlation energy of water molecule accounted for by several
computational methods.

HF MP2FC MP2FU MP4 CCSD CCSD(T) CCSD(T) G3 Exact
(Full)

Energy −76.058 −76.319 −76.332 −76.333 −76.325 −76.332 −76.346 −76.382 −76.435
% 99.51 99.85 99.87 99.87 99.86 99.87 99.88 99.93 100
Δ(kcalmol−1) −236 73 −65 −64 −69 −65 −55 −33 0.0

cessively cover more extensively the available electronic space. These sophistic-

ated basis sets use acronyms which indicate clearly their degree of completeness,

e.g., cc-pVXZ, cc-pCVXZ, aug-cc-pVXZ, etc., where X (D, T, Q, 5, 6, …) indic-

ates the cardinality of the basis set: X=D indicates a double-ζ quality basis set,

X=T a triple-ζ quality, etc. This methodology aims thus to provide results which

tend systematically and uniformly to those which will be obtained at the com-

plete basis set limit. This way the extrapolation formulae become much more

precise. Since the rate of convergence of the correlation part of the molecu-

lar energy is significantly slower than that of the Hartree-Fock component, it is

usually adopted a separation of the molecular electronic energies into their com-

ponents, each of which is then extrapolated independently. This route has been

exploited in several works [6-8] and constitutes a much promising tool, which

is believed to perform much better than the extrapolations based on classical

Gaussian basis sets.

The real importance of the correlation energy and the difficulty of account-

ing for it in practice is well illustrated by the data in Table 9.2, which shows

the fraction of the correlation energy of water molecule recovered by several

computational methods (all data, except G3, obtained from calculations using

the cc-pVTZ basis set on the MP2(FC)/6-31G* geometry).

We can observe that even the most sophisticated computational techniques

still include errors which are exceedingly large when compared to chemically

meaningful quantities. As a consequence, even if the size of the molecular spe-

cies allows for the use of the most sophisticated techniques, it is nevertheless

mandatory to combine the raw energetic results with judiciously chosen chem-

ical reaction schemes in order to obtain a maximal cancellation of the errors still
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affecting both sides of reaction, a result which is more likely to be achieved the

more “similar” are reactants and products in the chosen reactions. In this con-

text the reaction schemes we use must preferably be, at least, of the isodesmic

type, i.e., they must conserve the number and qualitative “types” of chemical

bonds in passing from reactants to products, or even of the homodesmotic type

(if, in addition, the number of atoms of each formal type in each hybridization

state is also conserved), thus ensuring the desired error cancellation and a good

description of the energetics by computational results. Very restrictive reaction

types are however often not feasibly usable, mainly because no experimental

accurate data is available for some of the involved species. In such cases we

are compelled to use other types of reactions, particularly atomization reactions.

Atomization reactions are very appellative since writing them involves no am-

biguity, i.e., they are uniquely defined; however their use is likely to lead to a

description which is prone to large inaccuracies. Indeed, since, by definition,

all bonds in the molecule are destroyed in such reactions, these reactions are

as far from an isodesmic reaction as possible and, as a consequence, no error

cancellation occurs. Thus the task of calculating accurate atomization energies

becomes very difficult when using atomization reactions.

Even though some of the methods we cited above are indeed very accurate

computational techniques which allow the reliable prediction of the thermo-

chemical parameters of chemical systems, their usefulness has serious drawbacks

since their computational cost rises so steeply that they become unpractical un-

less we restrict the studies to very small molecular systems. In the context of the

study of larger systems useful alternatives are provided by the methods based

on density functional theory (DFT). Since the account these methods take of the

electronic correlation effects is not exact, the usual implementations involve a

considerable amount of empirical parameterization thus becoming conceptually

very distant from the the philosophy of ab initio theory. The main advantage of

such methods is their much higher performance-to-cost ratio when compared

to the wavefunction based methods, enabling their application to much larger

molecular systems. A major drawback of DFT techniques, which has not been
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surpassed yet, is that, contrary to what happens with the methods based on

the treatment of the wavefunction, there is no straightforward procedure allow-

ing the systematic convergence of the results of DFT calculations obtained with

truncated basis sets to the exact ones.

Additionally to the methods used to obtain the accurate values of the energy

of the molecular systems, other additional tools are required to analyse the so

obtained wavefunctions and several effects which can occur. Aromaticity, being

a multifaceted and elusive molecular property observed in systems containing

one or more cyclic arrangements of atoms, has been traditionally considered

and analysed from three starting viewpoints: structural, energetic and magnetic.

In our work we are mainly concerned with the analysis of the aromatic beha-

viour of molecules based on the consideration of their magnetic properties. In

fact, these properties are likely to show special relationships to the microscopic

phenomena which is believed to be the basis of aromatic behaviour, i.e., the

circular delocalization of electrons. Briefly, the response of cyclic electronic

systems to an external magnetic field is manifested through the creation of a

ring current which, ultimately, will produce an induced magnetic field opposing

the external magnetic field (aromatic behaviour) or reinforcing it (antiaromatic

behaviour). In either case the net result will be observable in Nuclear Mag-

netic Resonance (NMR) experiments as the properties called nucleus chemical

shifts. Since Quantum Mechanics can be used to calculate the molecular chem-

ical shielding tensor, we can thus hope that this is a truly direct way of testing

the emergence of the ring currents associated with the aromatic/antiaromatic

behaviour, and will thus provide an objective test of the aromatic/antiaromatic

behaviour itself. Using computational techniques based on Quantum Mechanics

is indeed advantageous over NMR experiments since in this case we can even

probe the ring current (chemical shielding) at any point within the molecule

and not just at the nuclei. Thus, from the computational viewpoint, the relevant

properties are the so called Nucleus Independent Chemical Shifts (NICS), as first

suggested by Schleyer and co-workers [9].

Traditionally NICS are shown as the symmetric of the isotropic component of
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the chemical shielding tensor evaluated at the center of the rings or, in order to

properly account for the nodal properties of the π−orbitals, and to minimize the

(contaminating) effects of the σ electronic framework, at some point above or

below that geometric center; significantly negative values of the NICS are then

associated with aromatic behaviour while positive values indicate antiaromati-

city.

Additionally, NICS calculation are often combined with Natural Bond Orbitals

(NBO) [10-13] analysis of the wavefunctions to get usefull insigths about the

detailed contribution of selected orbitals to the magnetic properties. We can

then separate unequivocally the effect of π–electrons on the calculated NICS,

i.e., the individual effects on the observed aromaticity/antiaromaticity of the

systems under analysis.

9.2 Typical Results for Selected Molecules

Unless otherwise stated, the equilibrium geometries of all studied systems

have been determined from density functional theory using the Becke-3-para-

meter hybrid exchange [14] and the Lee_Yang_Parr [15] correlation density func-

tional (B3LYP) together with two basis sets: 6-31G* [16] and 6-311G** [17,18]. The

harmonic vibrational frequencies were obtained from the optimum B3LYP/6-

31G* geometries using the same basis set and were scaled by a factor [19] of

0.9614 in order to correct for anharmonicity. More accurate energies were also

obtained from single-point calculations at the most stable B3LYP/6-311G** geo-

metries, using the triple-ζ correlation-consistent basis set, cc-pVTZ [5] together

with the B3LYP functional. These optimized geometries were also used to ob-

tain the energies at the MC-UT, MC-QCISD, while the calculations using the G3

type series of methods use their own optimized geometries. The NICS values

were calculated using RHF/6-31G* wavefunctions derived from the B3LYP/6-

311G** geometries. The methodology used was developed by Schleyer and

co-workers [9]. Two different NICS values were calculated for each ring and

each molecule: one at the geometrical centre of the ring (i.e., the point whose

coordinates are the nonweighted mean of the homologous coordinates of the
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heavy atoms of the rings), denoted NICS(0), and 1.0 Å above the center of the

ring, denoted NICS(1.0).

9.2.1 Anthranil Aromaticity [20]

Antranil (benzo[c]isoxazole, I) is a highly unsaturated bicyclic nitrogenous

heterocycle with 10π-electrons, distributed among two rings each one with 6π-

electrons, and a single, classical resonance structure. Thus, each individual

ring, as well as the anthranil molecule as a whole, satisfies the Huckel 4n + 2

rule. We ask “is it aromatic?”, for this species is π-isoelectronic/isoconjugate

with its isomers 1,2-benzisoxazole (II) and benzoxazole (III), as well as with

quinoline (IV) and isoquinoline (V), for which the presence of aromaticity seems

unambiguous.

N

O

O

N

O

N

benzo[c]isoxazole benzo[d]isoxazole benzo[d]oxazole
[Anthranil]

(I) (II) (III)

On the other hand, the carbon–carbon bond conjoining the two rings is an

essentially single bond in that, like the corresponding bond in azulene (VI) and

the Ph–Ph bond in biphenyl (VII), it is always a single bond in any resonance

structure lacking a long bond (cf. the “Dewar” structure) or a dipolar/zwitterionic

description.

N

N

quinoline isoquinoline azulene
(IV) (V) (VI)

N

O

N

O

biphenyl oxazole isoxazole
(VII) (VIII) (IX)
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The energetics of anthranyl has been studied through the analysis of the fol-

lowing homodesmotic reactions:

(R1)
N

O

Anthranil

N

O

Benzoxazole

(R2)N

O

isoxazole

N

O

oxazole

(R3)
N

O

Anthranil

N

O

oxazole

N

O

isoxazole

N

O

Benzoxazole

+ +

(R4)
O

N

benzo[d]isoxazole

N

O

oxazole

N

O

isoxazole

N

O

Benzoxazole

+ +

(R5)
N

O

Anthranil

O

N

benzo[d]isoxazole

(R6)

(R7)

Anthranil

N

O

O

N

benzo[d]isoxazole

OH

CN

whose computed reaction enthalpies at T = 298.15 K are collected in Table 9.3,

together with the derived experimental reaction enthalpies, obtained from the

experimental standard enthalpies of formation, at T = 298.15 K, of the com-

pounds involved in the reactions (the experimental standard enthalpies of form-
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Table 9.3. Calculated and experimental reactions enthalpies at 298.15 K.

ΔrH0
G(T = 298.15 K)/kJmol−1

B3LYP G3(MP2) G3 Exp.

6-31G 6-311G** cc-pVTZ

Reaction (R1) −150.4 −153.5 −152.5 −157.1 −157.0 −(136.0±2.2)
Reaction (R2) −90.9 −94.4 −93.6 −96.9 −97.1 −(94.1±0.7)
Reaction (R3) −59.5 −59.0 −59.0 −60.2 −59.0 −(41.9±2.3)
Reaction (R4) −13.2 −13.1 −13.0 −13.3 −13.0 —
Reaction (R5) −46.3 −46.0 −46.0 −46.9 −46.8 —
Reaction (R6) −122.7 −153.1 −150.9 −155.3 −155.6 −(148.0±3.0)
Reaction (R7) −76.4 −107.2 −104.9 −108.3 −108.7 −(112±8.4)

ation of the auxiliary molecules were taken from Refs. 21,22). For the iso-

merization reactions R1 and R2, we obtain an experimental value for ΔrH of

−(136.0± 2.2) kJmol−1, for the former, and −(94.1± 0.7) kJmol−1, for the lat-

ter. These values are in good agreement with the results of our calculations

and allow us to attribute the observed difference to a change in aromaticity

of about (41.9 ± 2.3) kJmol−1. By regarding reaction R3 as the sum of reac-

tions R1 and R2, an experimental value for ΔrH of −(41.9 ± 2.3) kJmol−1 is

obtained, which is the result of a balancing of isomerization energies and aro-

maticity change. So it seems that the hypothetical reaction R4 should essen-

tially be thermoneutral, because isomerization energies plausibly cancel (1,2-

benzisoxazole → benzoxazole; oxazole → isoxazole) and also because there is

no particular difference in aromaticity between the reagents and the products.

Theoretical calculations give a value of about −13 kJmol−1 for this reaction,

in good agreement with these assumptions. Note that the theoretical value of

for reaction R3 is about −59 kJmol−1 (Table 9.3), which shows a deviation of

−17 kJmol−1 from the experimental value. From the thermoneutrality of reac-

tion R4 and by using the enthalpies of formation [21] of the gaseous species

involved [oxazole: −(15.5± 0.5) kJmol−1; isoxazole: (78.6± 0.5) kJmol−1; ben-

zoxazole: (44.8 ± 0.5) kJmol−1] we estimate the enthalpy of formation of 1,2-

benzisoxazole to be (138.9± 5) kJmol−1. Similarly, for Equation R5 we estimate

a value of ΔrH of about −(41.9 ± 2.3) kJmol−1 [the theoretical results for re-
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action R5 of ca. −46 kJmol−1 corroborate this estimation] and consequently

we obtain a value of (138.9 ± 3.1) kJmol−1 for the enthalpy of formation of

1,2-benzisoxazole. This value can favourably be compared with the estimates

obtained from atomization energies at he G3(MP2) and G3 levels (Table 9.4)

To further corroborate this estimate, we considered the ring-opening iso-

merization reaction R6 for which the experimental value for ΔrH is −(148.0±
3.0) kJmol−1, in good agreement with the theoretical calculation, allowing a

value of about −(106.1± 3.8) kJmol−1 [= −(148.0± 3.0) + (41.9± 2.3) kJmol−1]

to be estimated for the enthalpy of reaction R7, which involves the ring opening

of 1,2-benzisoxazole. Reaction R7 was also studied in the liquid phase (aqueous

alcohol) and the value of ΔrH is −(112±8) kJmol−1 [23], not that different from

the one we have considered above. This is not too strange if the isomers have

similar solvation energies. From the value of ΔrH(R7) [−(106.1± 3.8) kJmol−1]

and the enthalpy of formation of 2-cyanophenol [(32.8± 2.1) kJmol−1] [22], we

estimate a value of (138.9± 4.3) kJmol−1 for the enthalpy of formation of 1,2-

benzisoxazole. Another interesting comparison involves reaction R8:

(R8)

N

N

O

benzofurazan

(X)

O

isobenzofuran

(XI)

N

O

anthranil

(I)

+ 2

Naively, by neglecting any differential aromaticity effects in the rings and the

N−O−N anomeric interaction found only in benzofurazan (X), we are tempted

to suggest that this reaction should be thermoneutral. There are three measure-

ments for the enthalpy of formation of gas-phase benzofurazan: (302.3 ± 2.1)

[24], (300.7± 2.1) [25] and 272.7 [26] kJmol−1. We believe that the third value

can safely be neglected because of “age” and a lack of consensus, and so, we

take an average value of (301 ± 3) kJmol−1. No measurements have been re-

ported for isobenzofuran (XI). Computationally, from accurate G3 atomization

energies, we got an enthalpy of formation for benzofurazan of 311.1 kJmol−1

while, for isobenzofuran we got 77.3 kJmol−1 from identical level calculations.

As referred above, through an acceptable reasoning we could suggest reaction
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Table 9.4. Estimated enthalpies of formation (from atomization reactions).

G3(MP2) G3 Exp.

Anthranil 187.4 190.7 180.8±2.1
Benzoxazole 30.3 33.7 44.8±5.0
Benzisoxazole 140.5 143.8 138.9±4.3
2-Cyanophenol 32.1 35.1 32.8±2.1
Isoxazole 85.9 85.9 78.58±0.54

82.0±0.6
Oxazole −11.1 −11.3 −15.5±0.54

R8 would likely be approximately thermoneutral; in this case we would ob-

tain an enthalpy of formation of about 189.2 or 194.2 kJmol−1, for anthranil,

respectively by using the experimental estimate of the enthalpy of formation of

benzofurazan or our G3 estimate of the same parameter. However, accurate

computational techniques allows us to go further and calculate the reaction en-

thalpy as −7.1 kJmol−1, again from G3 energies and, again, not that different

from our conjecture of thermoneutrality. In this case our estimates of the en-

thalpy of formation of anthranil would be 185.6 or 190.7 kJmol−1, respectively

using experimental or computational data for the enthalpy of formation of ben-

zofurazan. In either case we must recognize the quality of our calculations if we

consider the close similarity between the last estimates and the experimentally

measured value of the enthalpy of formation of anthranyl, 180.8± 2.1 kJmol−1.

One may regard both isomers anthranil and 1,2-benzisoxazole as derivatives

of 1,2-oxazonine (i.e., 1-oxa-2-aza-2,4,6,8-cyclononatetraene, XII) with an ad-

ditional transannular C–C bond that transforms this monocycle into a bicyclic

species with five- and six-membered rings:

N

O

1

2

3

4
5

6

7

8

9

9

10

8

7

6
5

4

3

2

1

1,2.oxazonine cyclodeca-1,3,5,7,9-pentaene
(XII) (XII)

In the absence of any additional information, one would assume that the

above procedures would lead to bicyclic systems with very similar enthalpies
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Table 9.5. Nucleus independent chemical shifts (ppm).

6-membered-ring 5-membered-ring

NICS(0) NICS(1.0) NICS(0) NICS(1.0)

Anthranil −6.0 −8.1 −14.8 −13.0
1,2-benzisoxazole −10.3 −11.6 −10.8 −10.1
Benzoxazole −10.9 −11.8 −9.9 −9.4
2-cyanophenol −9.4 −10.2 — —
Oxazole — — 12.2 10.4
Isoxazole — — 12.6 11.0
Phenol −9.7 −10.7 — —
Benzene −8.9 −11.1 — —
Benzonitrile −9.1 −11.0 — —
Naphthalene −9.3 −11.5 — —

of formation. In fact, as enunciated above, our studies show that the differ-

ence is about 42 kJmol−1. This difference is significant, but is far less than

the 140 kJmol−1 by which naphthalene is more stable than its aromatic iso-

mer azulene, both of which can be considered as resulting from cyclodeca-

1,3,5,7,9-pentaene (XIII) through convenient transannular bond formation. This

suggests that by thermochemical criteria, if we ascribe aromatic character to 1,2-

benzisoxazole, then we should ascribe significant aromatic character to anthranil

as well. Magnetic properties provide an alternative way of analysing aromati-

city [9]. The NICS (nucleus-independent chemical shift) values for the molecules

involved in this study have been calculated from the RHF/6-31G* wavefunctions

at the most stable B3LYP/6-311G** geometries the main results being collected

in Table 9.5.

The NICS values calculated above the ring and at the center of the ring are in

very good agreement with each other and both sets of values indicate that all the

species have aromatic character since they have negative values. The benzenic

rings of all these systems, with the exception of anthranil, shows NICS values that

are consistent with the value found for benzene itself with the same basis set and

wavefunctions [NICS(0)= −9.7 ppm], but they are slightly more negative. Similar

comparisons apply to the NICS calculated at the centre of the five membered

rings, which compare with the values found for pyrrole (−15.1 ppm) and furan
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(−12.3 ppm) [9]. The NICS values for anthranil are remarkably different from

those of the other compounds studied in this work; anthranil has a larger NICS

value for the six-membered ring and a correspondingly lower value for the

five-membered ring. This indicates a loss of aromaticity in the six-membered

ring and an increase in the aromaticity of the five-membered ring, which seems

to be in agreement with our calculations thus suggesting that anthranil is less

benzenoid than its isomeric molecules. Benzene and 2-cyanophenol (as well as

the monosubstituted phenol and benzonitrile) are not that different in terms of

aromaticity. Even benzoxazole and 1,2-benzisoxazole are not that different in

terms of their six-membered rings. What about anthranil? Interestingly, in that

the sum of the NICS values [(0.0) or (1.0)] for the five- and six membered rings

in anthranil is very nearly the same as those for its isomers 1,2-benzisoxazole

and benzoxazole, it would appear that the aromaticity of these three species are

very nearly the same as well.

9.2.2 Stability of Chromanone and Coumarin Isomers [27,28]

O

O

O

O

OO

chromanone 3-isochromanone dihydrocoumarin
(XIV) (XV) (XVI)

O O O

O

coumarin chromanone
(XVII) (XVIII)

Each of the three isomeric chromanones has an optimum geometry con-

sisting of a planar benzenic ring and a heterocyclic ring largely distorted from

planarity. Planarity of the last ring is inhibited either by the angular strain within

the sp3 hybridized carbon atoms as well as the repulsion between contiguous

−CH2− groups. The hydrogen atoms of these fragments are, in fact, observed

to adopt almost perfectly mutually staggered conformations for the chromanone
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and dihydrocoumarin isomers. Contrasting with the above behaviour, both cou-

marin and chromone, systems mainly consisting of sp2-hybridized fragments, are

found to adopt completely planar structures at their most stable molecular geo-

metries. Indeed, such planar conformation favours the occurrence of stabilizing

extended electronic delocalization between all those fragments, which, when

involving cyclic structures, evidences the peculiar stabilizing effect we generally

call aromaticity.

In order to estimate the enthalpies of formation of the systems from the cal-

culated energies, we used the following set of homodesmic reactions involving

auxiliary systems whose thermochemical properties are well established exper-

imentally [21,29-32]:

(R9a)
O

O

O

O

O

O

+ +

(R9b)
O

O

O

O

+ +

(R9c)

O

O O

O

+ +

(R9d)
O

O

O

O

+ +

(R10a)
O

O

O OO O

+ +

(R10b)
O O OO

+ +
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(R10c)
O

O OO

+ +

(R10d)
O

O

OO

+ +

(R10e)
OO

OO

+ +

(R11a)
O

O O

O

+ +

(R11b)
O

O

O

O

+ +

(R11c)
O

O

O

O

+ +

(R11d)
O

OO O

O

+ +

while for the other isomeric pair we used the following set of isodesmic/homo-

desmotic reactions:

(R12a)
OO OO

+ +

(R12b)
OO OO

+ +
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(R13a)
O

O

O

O

+ +

(R13b)

O

O O

O

+ +

The resulting estimated enthalpies of formation are collected in Table 9.6.

Considering first the most saturated set of molecules (chromanone, 3-isochro-

manone and dihydrocoumarin) we observe a good agreement between our

computational estimates and the experimental data, with almost no signific-

ant difference between the DFT and the most accurate correlated MC-UT and

MC-QCISD results, this being, certainly, an indication of the adequacy of the

chosen homodesmotic reactions. Differences between the two sets of calcu-

lations become apparent when we consider the estimates of the enthalpies of

formation obtained from atomization reactions. Even though we get acceptable

results from the MC-UT and MC-QCISD energies, with deviations not exceeding

12.5 kJmol−1, the estimates obtained from the more modest B3LYP energies be-

come clearly unacceptable, since the associated errors can exceed 50 kJmol−1

for the B3LYP/ccPVTZ results and are even worst for the B3LYP/6-311G** ones.

The experimentally observed stability ordering, however, is well described by

all our calculations, which correctly predict dihydrocoumarin to be the most

stable isomer, followed by 3-isochromanone (about 12 kJmol−1 less stable) and

by chromanone (about 44 kJmol−1 more unstable).

Both chromone and coumarin had been experimentally studied previous-

ly [29,33,34], but the obtained enthalpies of formation differ considerably from

the present measurements. Indeed, the earlier obtained enthalpies of formation

of −176.8±1.8 kJmol−1 for coumarin and of −148.5±2.9 kJmol−1 for chromone

are in disagreement with our own measurements by as much as 13.4 kJmol−1

(coumarin) and 22.4 kJmol−1 (chromone), both being predicted as being ex-

cessively stable as compared with the present work.
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Table 9.6. Calculated and Experimental Formation Enthalpies at 298.15 K.

−Δf H◦(g)/kcalmol−1

Compound R DFT/B3LYP MC-UT MC-QCISD G3(MP2) Exp.

6.311G** cc-pVTZ

Chromanone 9a 202.9 202.3 198.8 199.2 — 204.5±2.4
9b 202.4 202.2 201.3 201.6 —
9c 213.4 212.5 206.2 206.7 —
9d 204.4 201.5 196.0 196.5 —
At 110.1 152.9 192.0 192.1 —

Dihydrocoumarin 10a 239.4 238.6 233.8 234.7 — 247.9±2.3
10b 239.0 238.5 236.3 237.1 —
10c 250.0 248.8 241.2 242.2 —
10d 245.7 245.0 241.9 242.5 —
10e 251.4 249.5 247.2 246.9 —
At 151.4 196.5 237.9 238.1 —

3-Isochromanone 11a 226.6 226.3 221.7 223.1 — 236.4±2.3
11b 234.5 234.5 228.9 230.4 —
11c 233.4 232.8 227.3 228.5 —
11d 235.9 235.2 234.9 235.1 —
At 135.9 182.2 225.6 226.2 —

Coumarin 12a 181.8 185.8 159.7 161.5 164.2 163.4±3.3
12b 171.5 172.1 159.5 160.8 162.3 (176.8±1.8)
At 80.5 129.2 140.8 143.6 173.8

Chromone 13a 140.3 144.5 123.6 124.4 127.5 126.1±2.5
13b 133.5 133.4 119.8 121.3 124.2 (148.5±2.9)
At 42.0 88.7 103.3 104.9 134.0

As can be seen from the results in Table 9.6, our calculations describe very

accurately our own experimental data; indeed, with the exception of the results

obtained from reaction (13b) and from MC-UT/3 and MC-QCISD/3 calculations,

the most accurate composite methods [MC-UT/3, MC-QCISD/3, and G3(MP2)]

provide estimates of the enthaply of formation of these compounds with de-

viations from the experimental data which do not exceed 4 kJmol−1 (i.e., we

achieve the standard of “chemical accuracy”). In addition, for the most accurate

G3(MP2) calculations, even the results obtained from the atomization processes

are in good agreement with what we found experimentally, with deviations

not larger than 10.5 kJmol−1, a remarkably accurate result for non-isodesmic

reactions. Additional corroboration of our suggested values is that we find a

38.3± 4.1 kJmol−1 difference between the enthalpies of formation of coumarin
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and chromone, as opposed to the earlier 28.3±3.4 kJmol−1 value, but in agree-

ment with the ca. 40 kJmol−1 difference found by our various calculational ap-

proaches.

Thus, our very accurate computational estimates correctly describe our ex-

perimental data and, on the other hand, crudely diverge clearly from the earlier

experimental data of Sabbah and Watik, with deviations of 16 kJmol−1 (cou-

marin) and 27.2 kJmol−1 (chromone). Consequently, we feel confident to pro-

pose our new experimental data as the most reliable ultimate thermochemical

data for coumarin and chromone.

Attempting to rationalize the stability order within each set of compounds, we

recognize that those isomers which are more stabilized involve the O = C − O

fragment (lactone) and we can anticipate that their behaviour is likely to be

understood from the interactions involving electron delocalization of the lone-

electronic pairs of the oxygen atoms. Quantitatively, such interactions can be

probed through an analysis of the wave functions in the framework of Natural

Bond Orbital (NBO) theory [10-13], according to which the electronic popula-

tion should be distributed over a set of localized one-centre (“lone-pair”) and

two-centre (“bond”) orbitals. This localized description closely mimics a clas-

sical Lewis-type picture of the electronic system, while delocalization effects are

evidenced by small occupancies of the set of anti-bonding orbitals. The stabil-

izing effect of such delocalization interactions can be quantitatively obtained as

second-order perturbative estimates of the corresponding bonding–antibonding

interactions. By doing so, we are thus able to identify the leading donor–

acceptor interactions which are responsible for the differences in the stabilities

of the chromanone isomers as being those involving the π lone-electronic pair of

the ring oxygen and the anti-bonding π*
C=O, which contributes with a stabilization

energy of about 36 kcalmol−1 and 43 kcalmol−1, respectively for dihydrocou-

marin and for 3-isochromanone, and the π lone-electronic pair of the carbonyl

oxygen and the anti-bonding σ*
C-O involving the carbon atom of the same group

and the other oxygen atom, contributing with 36 kcalmol−1 and 34 kcalmol−1,

respectively for dihydrocoumarin and for 3-isochromanone. Note that neither
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of the above interactions is allowed to occur in chromanone. The other import-

ant interaction justifying differences in stability involve electronic delocalization

from the π lone-electronic pair of the ring oxygen to the closer anti-bonding

π*
C=C of the benzenic ring. This interaction, which is absent in 3-isochromanone,

contributes a stabilization of about 22 kcalmol−1 and 28 kcalmol−1, respectively

for dihydrocoumarin and chromanone. Considering now the isomeric pair cou-

marin/chromone, we find that both experiment and our computational results

predict coumarin to be more stable than chromone (by about 37.3±4.1 kJmol−1),

a feature which can again be ascribed to the peculiar structure of the former

isomer involving the much more stable O− C = O (lactone) fragment. We also

recall that this ester fragment has considerable stabilization energy, identified

as resonance energy and comparable to that of N − C = O, i.e., the highly sta-

bilized isoelectronic amide group [35,36]. Similarly to what we found above,

coumarin, the unsaturated analog of the most stable dihydrocoumarin, is also

the most stable isomer. Considering only the homologous pairs of both classes

of compounds, we can observe that dihydrocoumarin is 43.4±3.3 kJmol−1 more

stable than chromanone while coumarin is only 37.3± 4.1 kJmol−1 more stable

than chromone, thus evidencing an attenuation of the stabilizing capacity of the

O− C = O fragment by somewhat more than 6 kJmol−1. As we stressed before,

the enhanced stability afforded by that fragment results from the possibility of

involvement of the lone-electronic pairs of both oxygen atoms in conjugative or

hyperconjugative mutual interactions, which are especially important for these

isomers, since the O − C = O fragment can directly interact with the contigu-

ous aromatic ring, thus enhancing the extended electronic delocalization. Thus,

fragmentation of this group results in the observed stability differences, but the

destabilizing effect is less pronounced for the pair coumarin/chromone, since, in

the latter system, the intercalation of a C = C double bond between both oxygen

atoms in the pyrone ring still tends to allow the mutual interactions involving

the respective π-lone electronic pairs to occur, thus avoiding the destabilization

becoming so severe for these systems. These interactions involving both π-lone

electronic pairs through the C = C double bond should presumably be evid-
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Table 9.7. Nucleus independent chemical shifts (ppm).

Benzene ring Pyrone ring

NICS(0.0) NICS(1.0) NICS(0.0) NICS(1.0)

Coumarin −9.40 −10.69 −0.42 −3.24
Chromone −10.27 −11.30 0.41 −3.12
Benzene −9.7 −11.5 — —
2-Pyrone — — −1.3 −3.8
4-Pyrone — — −0.2 −3.4
Naphthalene −9.3 −11.5 −9.3 −11.5
1,2-dihydroNapht. −7.8 −10.3 +2.6 −0.7

enced by some aromatic character in the pyrone ring of the coumarin, while no

aromatic character should be evidenced by the homologous ring of dihydrocou-

marin. In fact, nucleus independent chemical shifts (NICS) calculated from the

corresponding B3LYP/6-311G** wave functions of both systems indicate that the

NICS values at the center of the pyrone ring of chromanone and 1.0 Å above it

are, respectively, +2.49 ppm and −0.16 ppm, while the corresponding values for

dihydrocoumarin are +0.45 ppm and −0.73 ppm, respectively. These findings

thus indicate essentially no aromatic character for both systems, even though

the out of plane NICS value at the pyrone ring of dihydrocoumarin is somewhat

more negative (the ring is consequently somewhat more aromatic), which is cer-

tainly a consequence of the electronic interactions involving the lone electronic

pairs of both oxygen atoms integrating the fragment O − C = O. In contrast,

the NICS values for chromone (and also for coumarin) reported in Table 9.7

indicate a moderate aromatic character of the pyrone ring of both systems, as is

likewise shown for the monocyclic 2- and 4-pyrones as well. How aromatic are

these pyrones? Enthalpy of formation data for these monocyclic pyrones, or any

substituted derivative thereof, appear to be absent [37]: while the isomerization

enthalpy interrelating 4-methoxy-6-methyl-2-pyrone and 2-methoxy-6-methyl-4-

pyrone has been measured,[38] the presence of the exocyclic methoxy groups

confounds comparison, as we have insufficient thermochemical knowledge of

enol ethers and dialkoxyalkenes, as well as with pyrones of any type.
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Complementing the above analysis of aromaticity based on magnetic prop-

erty values we can also study the aromaticity of the studied systems on the

basis of energetic criteria. We might think that both species (coumarin and

chromone) should be rather aromatic, since they are π-isoelectronic or isocon-

jugate to the aromatic hydrocarbon, naphthalene, much as furan is related to

benzene. The hydrogenation enthalpies of dihydrocoumarin and chromanone

(dihydrochromone) can easily be obtained from their formation enthalpies and

from the known formation enthalpy of molecular hydrogen; we thus find the

enthalpies of hydrogenation to be −78.4 ± 3.5 and −84.5 ± 4.4 kJmol−1, re-

spectively, for dihydrocoumarin and for chromanone. By contrast, the likewise

derived hydrogenation enthalpy of the aromatic naphthalene to 1,2-dihydro-

naphthalene (using the enthalpy of formation of the former from Ref. 39 and

the latter from Ref. 40) is the far smaller −24.3±1.6 kJmol−1. The coumarin and

chromone values are comparable to that of the 1,2-dihydronaphthalene with its

nonaromatic ring to tetralin (1,2,3,4-tetrahydronaphthalene; data from Ref. 21),

numerically 100.3±2.2 kJmol−1. Equivalently, the value for coumarin resembles

that of the nonaromatic dihydronaphthalene more than that of the aromatic

naphthalene, where we remind the reader that we are referring to the second

“non-benzenoid” ring in the dihydrospecies. Alternatively, with precedent to

the energetics of 1-ring species and the “experimental realized Dewar-Breslow

model” of Ref. 41 we find, for the “aromatic” naphthalene and ring-opened

trans-stilbene, the enthalpy of formation difference of 75.5 kJmol−1 while, for

the “non-aromatic” 1,2-dihydronaphthalene, the difference is 23.6 kJmol−1. The

difference for coumarin and phenyl benzoate is but 20.8 kJmol−1. This again

documents that coumarin lacks aromaticity other than found in its benzene ring.

The above analysis cannot be applied to chromone. However, in that chromone

contains the same groups as coumarin, the fact that coumarin is rather much

more stable than chromone suggests that chromone likewise lacks aromatic

character beyond that of its benzene ring as well.
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