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resumo résumé / abstract

Neste artigo usa-se uma extensão do 
modelo de ciclos de crescimento de 
Goodwin para criar dados artificiais que 
seguem um processo (determinístico) 
caótico. Usam-se esses dados para 
ilustrar a desadequação da econometria 
tradicional para lidar com series caóticas. 
Para descrever o processo gerador dos 
dados, estima-se um modelo 
autoregressivo. Apesar de alguns dos 
testes tradicionais não evidenciarem 
problemas de má-especificação do 
modelo, este evidencia propriedades 
qualitativas diferentes do verdadeiro 
processo gerador de dados. Apresenta-se 
um procedimento desenvolvido para lidar 
com a possibilidade de caos: a estatística 
BDS. Também se sugere uma justificação 
para a pouca evidência de caos em dados 
macroeconómicos agregados.

Pour montrer que l'approche économétrique 
traditionnelle ne peut pas traiter le chaos 
déterministique, j'emploie une extension du 
modèle de cycle de la croissance de 
Goodwin pour generer des données de 
production artificielles.Un modèle EGARCH 
est estimé décrire le procédé de génération 
des données. Bien qu’ en utilisant quelques 
tests économétriques traditionnels, aucune 
évidence d’ erreur de spécification ne soit 
trouvée, le processus estimé est 
qualitativement erroné: il est dynamiquement 
stable quand le veritable processus est en fait 
instable. Un procédé économétrique 
spécifique, développé pour traiter le chaos 
déterministe est présenté: les statistiques de 
BDS. En outre, une explication de l’absence 
d'évidence du chaos déterministique dans les 
series temporelles macroéconomiques 
agregées est avancée.

To show that the traditional econometric 
approach is not able to deal with deterministic 
chaos, I use an extension of Goodwin's 
growth cycle model to generate artificial data 
for output. An EGARCH model is estimated to 
describe the data generation process. 
Although, using some traditional econometric 
tests, no evidence of misspecification is 
found, the estimated process is qualitatively 
wrong: it is dynamically stable when the true 
process is unstable. A specific econometric 
procedure developed to deal with 
deterministic chaos is presented: the BDS 
statistics. Also an explanation for the little 
evidence of deterministic chaos in 
aggregated macroeconomic time series is 
suggested.
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“Thanks to the early work of Frisch (1933) and Slutsky (1937) (...) most 
macroeconomists now share the same general analytical approach, that 
based on the distinction between impulse and propagation mechanisms.'

—  in Blanchard and Fischer (1989)

Slutsky’s paper published in 1937 in Econométrica was a revised English version of an earlier 
paper (1927) published in Russia. The main objective was to explain “the undulatory character of 
the processes and the approximate regularity of the wave& using nothing but random series. 
Although Slutsky was not able to give a general law to explain what kind of cycles can be 
generated by a moving summation of random series, Slutsky was able to establish that some 
sort of swings could be produced by a simple aggregation of erratic influences.

Frisch was aware of Slutsky’s results, while writing his 1933 article. Frisch constructed a model 
which, when disturbed, would generate damped oscillations (the propagation mechanism). To 
explain why the cycles are undamped and show some regularity, Frisch considered the impact of 
exogenous random shocks, which provided the necessary energy to feed the cycles. The basic 
idea was the rocking horse analogy of Wicksell: “if you hit a rocking-horse with a stick, the 
movement of the horse will be very different from that of the stick. The hits are the cause of the 
movement, but the system's own equilibrium laws condition the form of the movements”1.

Authors who have not accepted this approach are innumerous (Schumpeter, Harrod, Goodwin, 
Kaldor, Kalecki, etc.). These economists had a different approach. They considered the 
economic system to be inherently unstable. In their opinion, even in the absence of exogenous 
shocks, the economic system fluctuates cyclically. This deterministic approach requires the 
consideration of a non-linear model. These ideas lost their influence in the 70’s and 80’s because 
the deterministic cycles had the unpleasant feature of being easily predictable, being 
incompatible with optimising rational agents. But, what if deterministic cycles are unpredictable? 
In that case the above argument no longer applies and the idea of deterministic non-linear 
models is resuscitated.

In the recent economic literature there is a number of examples of how classical models can be 
easily extended to accommodate the possibility of chaotic motions. The reader interested in a 
relatively recent survey may whish to consult Reichlin (1997).

A related problem, raised by some authors, e.g. Blatt (1983) and Louçã (1997), is to question the 
ability of current econometric procedures to deal with deterministic chaos.

In this paper, after a brief definition of deterministic chaos, an extension of Goodwin (1991 )'s 
model is used to generate artificial data. I show that, with standard procedures, a linear (auto
regressive) econometric model, with no (apparent) evidence of misspecification, can be estimated. 
The properties of the estimated model are qualitatively wrong. Although Louçã (1997) did a similar 
exercise, there are two main differences between my approach and Louçâ’s approach: first, while 
Louçã took the evidence of heteroskedasticity as a sign of the existence of chaos, in this paper 
heteroskedasticity is modelled in a more modern (EG)ARCH model. Second, when “stationarizing” 
the data, before testing for non-linear structures, Louçã simply removed a linear trend. I perform a 
unit root test, and then take the first differences, as it is common econometric practice.

* The author is grateful to two anonymous referees, Francisco Louçã, and, especially, to António Alberto 
Santos, for helpful comments, suggestions, and corrections. The usual disclaimer applies.
1 Wicksell, K. (1918), Karl Petander: Goda och dárliga tider”, Ekonomisktidskrift, vol. 19, pp. 66-75, cit. in 
Thalberg (1990).

1. Introduction*
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I conclude then that to accommodate the possibility of deterministic chaos specific procedures 
have to be developed. One of them is presented: the BDS statistics, which was developed to 
detect low dimensional deterministic chaos (although it has power to detect other non-linearities 
as well). It is also illustrated a possible explanation for little evidence of deterministic chaos in 
macroeconomic time series (while in financial time series there is overwhelming evidence of non
linear dependence and some evidence of chaos): aggregation can hide evidence of chaos.

2. Chaos: Attractors and Sensitive Dependence on Initial Conditions

The technical definition of a chaotic motion lies heavily in three concepts:

—  Conservative and Dissipative Systems,

—  Sensitive Dependence on Initial Conditions (SDIC), and

—  (Strange) Attractors.

A conservative system is a system without any kind of friction, thus it conserves its total volume 
(for example total energy) along the phase space. A dissipative system, see Medio (1992), is 
characterized by a contraction of phase space volumes with increasing time. Formally this can be 
defined as the Jacobian of the system of differential equations having a negative trace. Because 
of dissipation, an n-dimensional system will eventually become confined to a subset of Hausdorff 
dimension2 less than n (which can be a fractal dimension).

Let cf)t : U -» U,U c  Rn, be the solution of a system of ordinary differential equations. The system 
shows SDIC if there exists 8 >  0 such that, for any x GU and any neighbourhood N of x, there 
exists y  e N and t >  0 such that | </>f(x) -  4>t(y) \ >  8, see Medio (1992). This definition says that 
even small differences in the initial conditions will lead to completely different paths, turning 
impossible to make long run forecasts.

Finally, we say that a compact set A c  U, invariant under </>f is a strange attractor lor a system if 
there is a set B with the following properties:

1. B is an n-dimensional neighbourhood of A,

2. for any initial point x(0) e  B, the trajectory representing the solution x(t) remains in B for 
all t >  0, and x(t) A,

f-HK=0

3. there is SDIC,

4. there is a dense orbit on A for the flow </>t.

The meaning of the first three conditions is obvious. The last one means the attractor cannot be 
split into two regions. To have a strange attractor it is important that the system is a dissipative 
system; since it is dissipation that makes transitory phenomena disappear. Sensitivity to initial 
conditions is what makes chaotic systems so special. Because one can never characterize a 
system's initial state to infinite precision, it follows that long-term chaotic evolution can never be 
predicted. The best that one can do is to observe that there will be a probability distribution 
according to which neighbourhoods of an attractor are visited. Occasionally, this “invariant 
measure”, can be calculated from a formula, but, in general, this is not possible.

2.1. The Rossler Attractor
One of the simplest systems that can generate chaotic motions is the Rossler band. Formally, the 
system of equations that I use in the next sections is a variant of the Rossler band. For more on 
this, the reader should consult Goodwin (1991). In this section I will just use this system to 
illustrate how chaotic series can be generated.

2 Let N (e) be the number of squares with length e needed to cover an object, then the Hausdorff dimension is 
given by D= lim

ln(1/e) '
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Consider the following system:

I U ’ =  0 .5 L  
L ’ =  -0 .5 U  +  0 .1 5 L  -  0 .8Z  

[ Z ’ =  0.001 +  gZ(L  -  0 .0 4 8 )

For small values of g we have a limit cycle of one period (not shown). But as g increases a 
bifurcation occurs, and the cycle period doubles. If we continue to increase g another bifurcation 
occurs, creating a limit cycle of four periods. For g high enough we have an infinite period limit 
cycle, i.e. chaos. See figure 1 to observe the evolution of the phase diagrams of U and L as g 
increases.

Figure 1: Period doubling and Chaos: The Rossler Band

fo r period cycle  (g = 65) C haos -  the Rossler a ttracto r (g = 85)

3. A Model of Growth and Cycles
Goodwin (1991) extended his 1967 predator-prey model in order to accommodate growth and 
cycles. The model generated a Kondratieff growth cycle, which also incorporated Juglar cycles.

Goodwin incorporated a Schumpeterian swarm of innovations according to which, after a weak 
beginning, the path-breaking innovation proves its importance and more and more firms will 
adopt the innovation. At the end, the rate of adoption will diminish since the majority of the firms 
have already adopted it.

For convenience Goodwin’s system of differential equations3 is reproduced here (all variables 
should be interpreted as deviations from the steady state values, being possible to take positive 
and negative values):

| U ’ =  hL 
L ’ -  - d U + f L - e Z  

[ Z ’ =  b +  gZ(L -  c)

U represents the labour proportion of national income; L the rate of employment and Z  can be 
interpreted as a control parameter, e.g. government budget surplus. As illustrated in the previous 
section for sufficiently high values of g the system generates deterministic chaos. The first 
equation of the system simply says that the labour proportion of national income increases with 
the rate of employment. The second equation, says that the evolution of the rate of employment 
depends positively on the rate of employment and negatively on the labour’s share of income 
and on the control parameter Z. As it can be seen the only (simple) non-linearity is introduced in 
the third equation, the one describing the dynamics of the control parameter Z. It is interesting to 
note how such a simple non-linearity is responsible for the reach erratic dynamics that we will 
observe in the rest of the paper.

(1)

3 For details on this, and in the next equations the reader is invited read the cited works of Louçã and Goodwin.
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To have an endogenous growth component in this model I admit that cyclical labour productivity
is influenced by investment (more specifically the cyclical component of labour productivity is
considered to be y K . , where K stands for the stock of capital).

K

For investment I admit an exogenous Shumpeterian swarm of innovations4:

K’ = m exp[n - q t -  exp[n -  qtfj (2)

Calibrating this equation with the values m = 4.5, n = 3, q = 0.15 and K0 = 1 (where K0 stands 
for the initial stock of capital) we have the dynamics described in figure 2 (t stands for time).

Figure 2: Capital Evolution for 50 years
K

The dynamics of output is determined by the evolution of total employment (= L* + L5) and by 
the evolution of labour productivity :

Y’ L’ K’
Y  ~ U T T  + y K (3)

where Y stands for output.

To consider a more general model, instead of equation (2) we will admit an accelerator 
mechanism. I will include directly the employment level in the investment equation. So equation
(2) becomes:

K ’ = m exp(n -  L -  qt -  exp(/7 -  L -  qt)) (4)

Joining all the equations, the complete model becomes:

U’ = hL
L’ = -ofU + f L - e Z
T  =  b + gZ (L -  c) (5)
K’ = m exp(/7 -  L -  qt -  exp(n -  L -  qt))
r  _  L’ jç _
Y L* + L 7 K

To understand the kind of output dynamics generated by this model we calibrate it with the 
following parameter values: b = 0.001 ; c = 0.048; d = 0.5; e = 0.8; f = 0.15; g = 85; h = 0.5; 
L* = 0.9; n = 3; q = 0.15; 7 = 0.3. One hundred years of data is generated. Since the

4 This function is known as the Gompertz curve and it is a special case of the generalised logistic. If I had used 
a simple logistic the main implication would have been a greater variation of the series accumulated in early 
stages. Cadima (1999) used a similar function to model the evolution of the cellular phones in Portugal.
5 L* is the steady state value of the rate of unemployment, and L is, as mentioned before, the deviation from
the steady state.
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parameters chosen to the investment equation imply a swarm of fifty years I have to introduce a 
second swarm of fifty years. This way in the first fifty years m takes the value m = 4.5. Beyond 
that m takes the value m = 135.6

Figure 3: Output Time Evolution

The initial values chosen to generate the first 50 years of data were U0 = 0.02, L0 = 0.04,
Z0 = 0, K0 = 1, Y0 = 1. After generating the first fifty years of data, I repeat the procedure to 
generate the second fifty years. With the obvious difference that now I will consider m = 135, 
and the initial values of the second series are the terminal values of the first series.

The results can be observed in figure 3. One interesting feature of the time series generated is 
that the cycles generated are not identical, even considering identical capital accumulation 
dynamics for both half centuries. We observe that a chaotic deterministic system can generate a 
quite erratic behaviour. The possibility that an erratic behaviour can be purely deterministic raises 
an interesting question: to what extent are the traditional econometric techniques appropriate to 
deal with this new issue? I try to sketch the answer in the next section.

4. An Econometric Application to our Artificial Model

Blatt (1983) alerted to the dangerous consequences of an error in the identification of the stability 
properties of an economic system, while questioning the ability of the traditional econometric 
tools to analyse the stability of an economic system. To answer this question Blatt made a simple 
test. Blatt generated some economic time series with the help of a non-linear, locally unstable, 
macro-model proposed by Hicks. With the artificial data Blatt tried to estimate the original model. 
The results were quite unpleasant: the estimated model did not identify the inherent instability of 
the original model. Basically, a dynamically stable model was estimated and the endogenous 
cycles were attributed to stochastic shocks, with no statistic evidence of misspecification.

Louçã (1997) took a similar approach. Louçã considered a more general model to generate 
artificial data for output that was able to simulate growth and cycles endogenously7. But, in the 
treatment of the time series output, a linear trend8 was extracted and then the residuals were 
modelled as a linear autoregressive process. The problem with Louçâ’s approach is that when 
one tries to apply usual econometric procedures to time series data it is good practice to test

6 The choice of m = 4.5 was arbitrary. The choice of m = 135 was to guarantee that the evolution of capital 
would be the same in both periods. Basically, using equation 2, m = 4.5 implies that capital is 1 in period 0 and 
30.67 after 50 years. Thus the initial value was multiplied by 30. In the second swarm of innovation the initial 
capital is 30.67 and, after 50 years, becomes 920 (so the initial value was multiplied by 30 again). This way the 
evolution of capital is essentially the same in both periods. If I had presented the graph of the evolution for
m = 135 and initial capital of 30.67, the graph would be identical to figure 1, with the obvious exception of the 
scale of the vertical axes.
7 The model used was very similar to the system of equation 5. The main difference is that Louçã represented 
the investment dynamics with a simple logistic and did not introduce an accelerator component in the 
investment function.
8 The trend was extracted from logaritmized time series, so it is an exponential trend relative to the original data.



Junho '03/(70/83)

previously the stationarity of the series. Before extracting a (linear) time trend, it is necessary to 
test the possibility of the series being difference stationary and not trend stationary.

I tested the stationarity of time series represented in figure 3 (the test used was the ADF test and 
was applied after logarithmizing the series). According to the test results, we could not reject the 
null hypothesis of non-stationarity for the log of the output (LY), while for the growth rate (DLY9) 
we reject the null hypothesis accepting the growth rate to be stationary around a constant. So an 
applied econometrist would not extract a linear trend to stationarize the series. He would rather 
consider the growth rate of Y.

Given these results I will model DLY as an autoregressive process. Using Ordinary Least 
Squares to estimate the results we get:

DLYt =  0.001 + 1.957 DLYt_, -  1.624 DLYf_9 + 0.939 DLYt « -  0.355 D L Y ™  (6)
1 (2.8) (29) 1 1 (-11.5) 1 *  (6.7) 1 J  (-5.3) 1 H

where the values in parenthesis are the t-statistics. The R-squared (and also the adjusted 
R-squared) is about 96%. The residuals show no evidence of serial correlation11. The number of 
lags chosen was based on the Akaike and Schwarz information criteria. This choice is 
strengthened by the fact that higher lags are not statistically significant12.

This estimated model fits perfectly in the Slutsky-Frisch’s paradigm: there is an exogenous trend 
and two different growth cycles (one with 4.5 years and the other with 24.8 years) aggregated 
additively. In figure 4 we can see how this estimated model would work in the absence of 
stochastic shocks.

Figure 4: The estimated model dynamics

To explain the persistence of cycles in this model, Frisch (1965) would suggest the addition of a 
stream of exogenous shocks. This is what I do next. A stream of exogenous shocks with mean 
zero and variance 0.0001444 is added to equation 6 with the help of a normal random number 
generator13. In figure 5 we can compare the original artificial time series with the time series 
generated by the estimated model (augmented with the stochastic shocks)14.

9 DLY is the first difference of LY. Since LY = In Y, DLY is the growth rate of Y.
10 Since I used semi-annual data, we have the growth rate of period t depending on the previous four semesters.
11 I used the Breusch-Godfrey Serial Correlation LM test. I tested for autocorrelation of the first, second, third, 
and fourth order. The P-values of the chi-square statistics were, respectively, 0.41, 0.15, 0.28, and 0.38.
12 For example, if we introduced a fifth lag, its P-value of the t statistic would be 0.39.
13 The value 0.0001444 was chosen to match the variance of this new time series with the original time series. 
Equation 6 becomes DLYt = 0.001 + 1.957 DLYt_̂  -  1.624 DLYt_2 + 0.939 DLYt_3 -  0.355 DLYt_4 + e,, 
where et is the stochastic shock, generated using the Normal Number Random Generator of Excel.
14 Between applied macroeconomists it is also common to stationarize the output time series, using the 
Hodrick-Prescott filter, instead of taking the first differences. I did not choose this method because it is, in my 
opinion, an arbitrary method without a sound theoretical justification. Anyway, if that method was used the results 
would be similar to the ones presented in equation (6). These results are available at request to the author.
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The econometric insufficiencies become apparent with these pictures. It is impossible to look to a 
linear model as a linear approximation of the true (non-linear) model when the true model is not 
locally stable. And that is what happens when one estimates a linear model, and the true data 
generation process is non-linear (and unstable). The estimated model will be stable (generating 
damped oscillations), and the persistence of the economic cycles will be left unexplained. This 
insufficiency is a fundamental one. Since the motion of a chaotic series is confined to a closed 
region (the strange attractor), it is impossible for a linear model to capture the local instability of 
the system. Any oscillating unstable linear model would generate explosive cycles, which could 
not be confined to a compact set.

4.1. Problems with heteroskedasticity
We have so far neglected the possibility of having heteroskedastic disturbances. In traditional 
time series analysis it was usual to consider homoskedastic processes (associating 
heteroskedasticity to cross-sectional data). But, at least since Engle (1982), one cannot put aside 
the possibility of having an Autoregressive Conditional Heteroskedasticity (ARCH) model or one 
of its extensions, as we shall see.

Consider a pth order ARCH process:

’Yt = p X t +e t

£. = u. gj + Y  a,eL
1 H ‘  (7)

where ut follows a standard normal. It easy to derive the conditional and unconditional variances
of £t:

/  I \  pVar(e,|e, _ „ =  a'  = m + £(2,6,1,

* ,/ t \ m ' (8
W ( e , )  = --------------- —

1=1

In this situation, although the OLS estimator is the best linear unbiased estimator (BLUE), but 
there is a more efficient non-linear estimator. Engle (1982) derived the likelihood function for this 
model and also presented a Lagrange Multiplier (LM) test for the ARCH process.

Figure 5: Two simulated Time Series
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15 The order of the ARCH process was chosen, basically, with the help of the Akaike and Schwartz information 
criterion, and with significance tests.

|Table 1: ARCH LM Test
obs x  Z?2 P-value

1st order 2.979 0.084

2nd order 15.199 0.001
3rd order 15.149 0.002
4th order 16.030 0.003

In table 1 we can see the results of the ARCH LM test. With these results an applied 
econometrist would have to deal with the conditional heteroskedasticity problem. In this work I 
considered first a Generalized ARCH (GARCH) model proposed by Bollerslev (1986) and also 
Taylor (1986). The advantage of this approach is that it is usually more parsimonious with the 
number of lags needed. In a GARCH (p,q) model the conditional variance is given by:

°7 = ®  + Z  + 1  P K j (9)
/= 1  /= 1

Bollerslev et al. (1994) show that this is equivalent to saying that ef can be modelled as an 
/4ftM/^max(p,qf),pjmodel. If equation 9 is correctly specified the standardized residuals should 
not exhibit additional ARCH.

After considering several GARCH models of different orders we concluded that the standardized 
residuals continued to exhibit ARCH, indicating that equation 9 was misspecified.

Nelson (1991) proposed an Exponential GARCH (EGARCH) model. Equation 9 is replaced by:

ln(<7,2 ) = W + M a : - ^ -  + y, ^ - ]  + £ / } ,  ln(of_y.) (10)
Í= I V  ° t - i  ° t - i )  7=1

After re-estimating equation 6, admitting that the conditional heteroskedasticity follows an 
EGARCH (2,4)15, we get:

DLYt =0.0003+ 3.10DLYt , -  3.61 DLY, ,+ 1 .8 7DLYt .-0 .368D LK  , H 1v
(19.8) (281.7) (-135.4) (84.6) (-55.8) V 1 ' )

, x - 7 . 2 + 2 . 1 3 - ^ - - 0 .0 7 - ^ -  + 1 . 8 1 - ^ - - 0 . 0 2 ^
ln(trf) = <-'5°) (l7 4' (T, (-0.82) orf l (9-2)(7,.2 (-0-26) Ct -, (12)

) +  K-ã1? ln(CT' -  ) -  ,n ( ^ -3 ) -  (0 ;5 3  ln(cr,l4 )

where the values in parenthesis are the z-statistics. As it can be seen, the results of equation 11 
do not differ substantially from the results obtained in equation 6. It is easy to verify that the 
stability properties do not change. When the ARCH LM test is applied to the standard residuals, 
the results are conclusive. As we can see in table 2 the null hypothesis of conditional 
homoskedastic residuals is not rejected. Even the Kiefer-Salmon test (also known as Jarque- 
Bera) normality test tends to accept the good specification of the model (the Kiefer-Salmon 
statistic has a value of 2.4 with a P-value of 0.3). Thus, not even the normality of the standard 
residuals would be rejected.
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Although without performing a battery of tests, we can see a tendency to accept this wrong 
model. Wrong because equation 11 represents a stable model, when we know the true 
underlying process is a nonlinear unstable one. Even equation 12 tells us that, although the 
conditional variance of the residuals will vary with time, it will stabilize, unless it is fed with 
exogenous shocks. The intrinsic instability of the model is not captured by any of the components 
of the EGARCH estimates.

5. The BDS Statistic
Although the erratic behaviour between a chaotic and a random motion may seem 
indistinguishable, there are important differences that allowed Brock et al. (1987)16 to propose a 
statistical procedure to test departures from independently and identically distributed (i.i.d.) 
observations.

Consider T observations of a time series (x^ x2,..., xT ) after removing all non-stationary 
components. Define the m-histories of xt process as the vectors (x1,..., xm), (x2,..., xm+1) , ..., 
(xT_m+1,..., xT). The correlation integral is the fraction of the distinct pairs of m-histories lying 
within a distance e in the sup norm17:

TT
X X W e - suP"<WTO(x1.-x.)
,=i j= i ' '

Ce.m,T~ ( T - m  +  l ) ( T - m )

where x, = (x,,... x/+m_,), and h (x) = \ °  ' [ X ~  °
1 i f x >  0

Under some assumptions Ce m Tconverges to Cem (see Brock et al. (1991) for details). The true

correlation dimension is ^ ln( —— . It is possible to show that the correlation dimension never
d l n d\ n( c ) 

exceeds the Haussdorff dimension. If as m increases — v £,m,7V also increases, then the system
d ln(e)

is stochastic. If, however, it tends to a constant then the data is consistent with chaotic behavior.

Brock et al. (1987)18 employed the correlation dimension to obtain a statistical test of 
non-linearity: they proved that under the null (xt i.i.d.) ln(C£>m) = m\n(Cea), which is the basis for 
the BDS statistic:

16 Brock, W. Dechert, W. and Sheinkman, J. (1987), “A Test for Independence Based on the Correlation 
Dimension”, University of Wisconsin, Madison, University of Houston, and University of Chicago, cit. in Brock et 
al. (1991).
17 Brock (1986) showed that the correlation dimension was independent of the choice of the norm, so it is not 
restrictive to consider the sup norm.
18 See footnote 16.

lia b le  2: ARCH LM Test to the EGARCH standard residuals
obs x  Z?2 P-value

1st order 0.009 0.924

2nd order 1.693 0.429

3rd order 1.936 0.586

4th order 2.096 0.718
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RDS = V 7 CcmJ (Ccxr) (14)
Oe,m,T

where crE m T \s the standard deviation consistently estimated19. Under the null the BDS has a 
limiting standard normal distribution. The asymptotic distribution behaves reasonably well, if the 
sample size is not less than 500, but it is poor for smaller sample dimensions.

To implement the BDS test, Monte Carlo Simulations of Brock et al. (1991) suggest that e should 
vary between 0.5 and 2 standard deviations of the data, and m between 2 and 5.

5.1. The BDS Statistic applied to our model
Since an ARCH model and its extensions typically assume i.i.d. standard residuals, Bollerslev et 
al. (1994) suggest the use of the BDS test as a specification test applied to the standardized 
residuals of a model. We have already seen that the Kiefer-Salmon test applied to the 
standardized residuals of our EGARCH(2, 4) did not reject the normality of those residuals. I now 
apply the BDS test to the same residuals. Two difficulties need to be faced with: the small 
dimension of the sample, and the asymptotic distribution of the test, which is strongly affected by 
the fitting of the EGARCH model, and has not been derived yet. To overcome both problems, I 
follow a procedure suggested by Brock et al. (1991), also applied by Louçã (1997): after 
estimating the BDS statistic I shuffle randomly the time series sample and then re-estimate the 
statistic. This procedure is repeated 100 times. If the process is purely random the dimension of 
the process will be unchanged and so will the estimated statistic. If the process is purely 
deterministic, then shuffling will destroy the correlation structure of the process. In table 3 we can 
see the results achieved20. The null hypothesis is, correctly, rejected.

|Table 3: BDS Test to the EGARCH standard residuals
m 2 3 4 5

8 =  0.5cr 13.85 18.01 25.44 41.47
(0.00) (0.00) (0.00) (0.00)

8  —  ¢ 7 7.16 7.14 7.37 7.8
(0.00) (0.00) (0.00) (0.00)

5.2. Some Problems
The above results suggest that it is easy to determine whether a time series follows a chaotic 
process or not. This is not correct. First, there is no practical distinction between a high 
dimensional chaotic model and a pure stochastic model, so this test is only appropriate to detect 
low dimensional chaos. Second, the rejection of the null hypothesis does not tell us anything 
about the alternative. For example, the data generator process may be a stochastic non-linear 
model and not a chaotic deterministic model. So the BDS statistic can also be used as a 
specification test for any non-linear model. The rejection of the null only tells us that there are 
some hidden non-linearities not captured by the original model.

Another interesting problem, particularly when we are analyzing macroeconomic time series, is 
the problem with aggregate data. Goodwin (1991) defended the use of large multidimensional 
disaggregated systems even though, unfortunately, he had always worked with aggregated 
models.

19 See Brock et al. (1991) for details on how to consistently estimate the standard deviation.
20 In parenthesis we have the proportion of the statistic values (obtained after reshuffling) that are higher (in 
absolute value) than the statistic value of the original series.
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To illustrate this problem we can see in table 4 the BDS test applied to five different chaotic 
series21 and to their average (Ft = (At + Bt + Ct + Dt + £,)/5). Since I constructed a sample of 
2000 observations the normal distribution may be used to find the critical values. While for any of 
the series obtained from a logistic chaotic equation there is overwhelming evidence of 
non-linearities, for the average of five chaotic series that evidence has almost completely 
disappeared: it is impossible to reject the null hypothesis at a 5% significance level except for 
(e, m) = (o.5<r,4). These results are not surprising: Ft is, obviously, chaotic, but being an average 
of five different chaotic series, it has a higher dimension than the primitive series, being harder to 
distinguish from a purely random motion.

6. Conclusion

We saw that the traditional econometric techniques have some flaws when dealing with 
deterministic chaos. Using the traditional econometric approach one will tend to accept that the 
source of the erratic movements is exogenous and that the system is dynamically stable, even 
though the model is known to be inherently unstable.

A different problem is that specific econometric techniques, designed to deal with the possibility of 
deterministic chaos, are not as powerful as one might wish: aggregation can hide evidence of 
non-linearities (a problem that can arise in many macroeconomic time-series), and the alternative 
to the null hypothesis is not well defined.

Some of these problems could be overcome if longer (with some thousands of observations) 
macroeconomic time series were available but that, unfortunately, is unavailable. Probably these 
are the reasons why there is so much more evidence of chaos in financial time series22 than in 
macroeconomic data: in financial time series there are huge data sets at an extremely 
disaggregated level.

In my opinion there is no fundamental reason to think that the financial system is deeply different 
from the general economic system, and so I see no reason to disregard a priori the study of the 
consequences of chaos in macroeconomic models.

Interestingly the economic science is not in harmony with other mathematical sciences. In 
Physics and Chemistry (from which much of our methodology has been imported) and in Biology, 
complex systems are the rule and not the exception. If we accept that economic life is nonlinear 
and that the oscillators are not independent but rather they interact between them, then chaos 
may come out. More precisely, in a continuous system we need at least three oscillators linked in 
order to produce chaos (e.g. Rossler band in Goodwin's model). Dechert et al. (1999) report the

21 The series were generated according to the formula: Xt = 4X t-1(1 -  Xt_.,). The only difference between At, 
Bt, Ct, Dt, and Et were the initial values, which are strictly contained between zero and one.
22 E.g., see Scheinkman and LeBaron (1989), and also Serletis and Gogas (1997).

l ia b le  4: BDS Test to Chaotic Time Series

m 2 3 4 5

E =  0.5(7 £  —  CT 8 =  0.5(7 8 =  (7 8 =  0.5(7 8 =  (J 8 =  0.5(7 8 - ( 7

A, 709 287 939 273 1239 262 1690 265

Bt 691 286 915 265 1191 252 1613 244

ct 733 285 969 270 1265 259 1711 252

Dt 692 287 925 269 1218 260 1657 254

Et 690 288 912 271 1190 259 1598 252

Ft 0.07 -1.08 1.02 -1.36 2.18 -1.25 1.57 -1.18
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result of a Monte Carlo study on the probability of chaos in large dynamical systems. They used 
neural networks as proxies for the equations that describe the dynamics of the system. Their 
results were quite impressive: “as the dimension of the system and the complexity of the network 
increase, the probability of chaotic dynamics increases to 100%”. It does not seem unrealistic to 
believe this is the case of the economic system with heterogeneous agents, imperfect markets, 
monopoly power, commercial and political relations between countries with different economic 
and political systems.
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